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On the Characterization of Strain-Hardening

in Plasticity
r by

J. Casey and P. M. Naghdi
Department of Mechanical Engineering
University of California, Berkeley, Calif. 94720

Abstract. 1In the context of a purely mechanical, rate-type theory of elastic-

plastic materials and utilizing a strain space formulation introduced in [1],

i this paper is concerned mainly with developments pertaining to strain-hardening

i behavior consisting of three distinct types of material response, namely

i hardening, softening and perfectly plastic behavior. It is shown that such
strain-hardening behavior may be characterized by a rate-independent quotient
of quantities occurring in the loading criteria of strain space and the cor-
responding loading conditions of stress space. With the use of special con-

: stitutive equations, the predictive capability of the results obtained are

2 illustrated for strain-hardening response and saturation hardening in a

uniaxial tension test.
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1. Introduction

Within the scope of a rate-type mechanical theory of elastic-plastic
materials, Naghdi and Trapp [1] have recently discussed the advantages of
formulating plasticity theory relative to yleld (or loading) surfaces in
strain space (rather than stress space). We adopt here the loading criteria
of the strain space formulation as primary and derive the associated loading
conditions in stress space. By comparing the local motion of the loading
surface in stress space to that of the loading surface in strain space during
loading, we find that three distinct types of material response representing
hardening, softening and perfectly plastic behavior can be defined in a natural
way. For convenience, these three types of response will be referred to
collectively as strain-hardening behavior. The development leading to the
latter, as well as illustrative examples of the results for special constitu-
tive equations, are the main objectives of the present paper. As in [1], we
confine attention to the purely mechanical theory of elastic-plastic materisals,
;nd base our development on the rate-type stress space formulation of Green
and Naghdi [2,3]* and on the alternative strain space formulation introduced
by Naghdi and Trapp [1].

By way of motivation, consider the response of a typical ductile metal in
a one-dimensional simple tension test in which the strain mey be moderately
large. Let e and s stand, respectively, for the component €1 of the Lagrangian
strain tensor and the component Bll the symmetric Piola-Kirchhoff stress temsor.
Figure 1 shows a plot of the stress s versus the strain e for the one-dimensional

homogeneous simple tension test. From the origin O to the elastic limit

fThe theory proposed in [2,3] is a general thermodynamical theory of elastic-
plastic materials. The development in [1] is carried out within a purely
mechanicel framework which can readily be interpreted in terms of the
isothermal case of the thermodynamical theory.




(identified by the point 1) the material is elastic, stress strictly increases*

with strain, there is no plastic straining and unloading taekes place along 1-0. On
the rising portion 1-3 (excluding point 3) of the s-e curve both stress and plastic
strain strictly increase with strain. Unloading from a point such as 2 takes

place along 2-2' leaving a plastic strain of amount 02'. At point 3, s attains

its maximum value§. On the falling portion 3-4-5 (excluding point 3) of the

s-e curve, stress strictly decreases with strain, but plastic strain continues

to strictly increase. Associated with each point of the segment 1-5 in Fig. 1,
there is a unique yield point on the s-sxis (i.e., in stress space) and a unique
yield point on the e-axis (i.e., in strain space). For the points 1,2,3,4,5

13B2’B3’ 5
1 and Bl are the initial yield points. As the segment 1-5 of the

stress-strain curve is traversed, the locus of the yield point on the s-axis ‘

, respectively. The

these are denoted by Al,A‘2 ,A3 ’AM’A5 and B Bh’B

points A

differs characteristically from that of the yield point on the e-axis, in that
the former reverses its direction of motion while the latter does not. ‘L

The usual loading criteria of the stress space formulation of plasticity

theory, when applied to the one-dimensional case under discussion, require that
the plastic strain rate be nonzero whenever the yield point on the s-axis is
moving upwards, and be zero when it is stationary. It is further stipulated
that the yield point on the s-axis cannot move downwards while tension is
being applied. These criteria are consistent with the results of the tensile

test for the rising portion 1-3 of the stress-strain curve, both for paths ..

s *Recall that a real-valued function f defined on some interval § of the real
P line is increasing if f(x,) 2 f(xl) whenever x; and x, belong to § and x,Zx,.

A function f is strictly Increasing if f(x2) > f(x,) whenever Xp >X; .
Similarly, f is decreasing if x, Zx; implies f‘(xzjéf(xl) and strictly
g decreasing if X, >x; implies f(xe) < f(xl).

§As was observed by Naghdi and Trapp [1, p. 789], the maximum of the s-e curve
corresponds to a point which is still in the rising portion of the engineering
stress (m) versus engineering strain (¢) curve. The maximum of the m-¢ curve,
where necking begins, corresponds to a point on the falling portion of the s-e

curve.
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the type 1-2 and paths of the type 2-2’. They also demand the correct kind of

behavior for paths of the type 4-4' issuing from points on the falling portion
3-5 of the stress-strain curve. However, they are clearly inadequate for paths
of the type 3-4 because the yield point on the s-axis does move downwards for
any such path; and, as was pointed out in [1], plastic strain is observed to be
strictly increasing in this region. On the other hand, again with reference to
the one-dimensional case under discussion, the loading criteria of the strain
space formulation require that the plastic strain rate be nonzero whenever the
yield point on the e-axis is moving outwards and that it be zero whenever this
yield point is stationary. It is further required that the yield point on the
e-axis cannot move inwards while extension is occurring. These requirements are
consistent with the behavior represented in Fig. 1. Thus, the plastic strain

is strictly increasing along the paths 1-2 and 3-4 and is constant along the

paths 2-2' and L4-4’.
In order to provide a background for some subsequent developments, it is
desirable to make further observations regerding the stress-strain curve in 4

Fig. 1. In the context of the classical infinitesimal theory, we recall the

relations

e=e te, , e, = s/E , (1)

where ee and ep are abbreviations for the components eil and eil of the elastic

and plastic strains, respectively, and E (>0) is Young's modulus. We note

that
d_e=.‘i.e£+‘EE d_e=d_9(ie_e)'l=l+ie.£ . (2)
ds ds ds °’ dee ds ‘ds dee
dee 1
Now with the use of d—s=E>o and (2)2, we have

3.




de de
ds>01fandonlyifdee >0 , ds<01famiox.1_1.y:I.fde <0 .

On the rising portion of the s-e curve g§>0 (or equivalently ?)0), on the

falling portion —<0 ( <O) and — at point 3 becomes unbounded. Then, at a

point A on the s-e curve, with the help of (2) ard (3) it is readily seen that

EEB > 0 if and only if A is on the rising portion of the curve,
1+ (%)
dee < 0 if and only if A is on the falling portion of the curve,

while 1+dep/dee becomes unbounded at point 3.

After recalling the main features of the purely mechanical theory of
elastic-plastic materials from [1,2,3]* in Section 2, a quotient 972 of
quantities which are derived from the loading functions f in stress space, and
g in strain space, is introduced. It is noteworthy that while 9 involves the

A
time rate of the stress tensor and g the time rate of the strain tensor, the

quotient 9/2 is independent of rates. 1In the latter part of Section 2, using
an equation obtained with the help of a physically plausible work assumption
introduced by Naghdi and Trapp in [4], we derive a geometrically revealing
expression for the quotient 972 [see Eq. (32)]. Next (Section 3), in terms of
the quotient ng, definitions are provided (see (43)) for strain-hardening
behavior, i.e., for hardening, softening and perfectly plastic behavior, and
their geometrical implications are examined. It is demonstrated that, while

during loading the yield surface in strain space is always moving outwards

locally, the corresponding yield surface in stress space may concurrently be

moving outwards, inwards or may be stationary depending on whether the material

el " e S ;

is hardening, softening, or exhibiting perfectly plastic behavior. Because of

ﬂdhile some of the formulas in Section 2 may appear to be repetitions of those
in [1], our starting point and some of our conclusions differ from (1] and for
clarity we have repeated these formulas.

L.
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our definitions (U43), a variety of functions associated with material behavior and
deriving from ;/; or ; are found to be positive, negative or zero according as a
material exhibits hardening, softening or perfectly plastic behavior. To avoid
undue repetition, we introduce the abbreviation (4L) and denote such conditions

by the letter H. Any function that satisfies conditions H can be used to charac-
terize strain-hardening behavior. By considering the limiting behavior of ;/;,

ve also examine (in the context of the developments of the present paper) the

phenomenon of saturation hardening studied previously by Caulk and Naghdi [S].

Definitions for saturation behavior are given at the end of Section 3.

The results in Sections 2 and 3 hold in the context of the nonlinear theory,
but in the remainder of the paper attention is confined to small deformations
of elastic-plastic materials. 1In order to demonstrate the predictive capability
of the strain-hardening characterization developed in Section 3, special sets
of constitutive equations are utilized in Sections 4 and 5 to discuss, respec~
tively, strain-hardening response and saturation hardening under uniaxial
loading.

For the particular constitutive equations utilized in Section L, a rate-
independent characterization of strain-hardening behavior is provided in terms
of a certain combination (2B+yp) of material constants. Moreover, it is shown
that both the time rate of work-hardening (&) and the time rate of tension (é)
may be used to characterize strain-hardening behavior. While the quotient 9/@
involves the coefficient § as well as the derivatives of strains with respect
to stress (see Eq. (64)), it is shown that for a certain special case, the
quotient 972 may be expressed (see Eq. (65a)) in terms of quantities appearing
in (2), (3) and (4) recorded earlier in this section. An examination of details
of the solution in Section U4 shows that in uniaxial tension and in the sense of
our definitions, linear elastic behavior is followed for perfectly plastic

behavior by a horizontal stress-strain curve, while herdening behavior is




o

represented by a straight line lying above, and softening by a straight line
lying below the perfectly plastic line.

Finally in Section 5 we consider another set of constitutive equations
having in particular a loading function employed by Caulk and Naghdi [5] in
their discussion of hardening response in small deformation of metals. Again
it is shown that a number of different functions can be used to characterize
strain-hardening behavior. Moreover, it is demonstrated that the quotient
?/2 may be calculated in uniaxial tension from a knowledge of the slope de/ds,
found from the stress-strain curve, and the elastic constants, namely Young's
modulus E and the shear modulus p, and thus may be easily identified experi-
mentally. Although our characterization of strain-hardening is, in general,
different from that discussed previously by Caulk and Naghdi [5], the two sets
of results are in agreement for the class of materials for which detailed
comparisons with experiments were undertaken in [5]. In this connection see

Eqs. (88), which also include a simple expression in terms of material coef-

ficients for the saturation hardening constant.
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2. The Quotient f[g of Quantities Occurring in Loading Criteria.
Let the motion of a body be referred to a fixed system of rectangular

Cartesian axes and let the position of a typical particle in the present con-

figuration at time t be designated by xi==xi(XA,t), where X, is a reference

position of the particle. Throughout the paper, lower case Latin indices are

associated with the spatial coordinates x, and assume the values 1,2,3.

i
Similarly, upper case Latin indices are associated with the material coordinates
XA and take the values 1,2,3. We also adopt the usual convention of summation
over repeated indices.

We define a symmetric Lagrangian strain tensor by eKL==%(FiKFiL-5KL), where
FiK==axi/aXA is the deformation gradient relative to reference position and 5KL
is the Kronecker symbol. The six-dimensional Euclidean vector space formed

from the components e is called strain space. The components of the symmetric

KL

Piola-Kirchhoff stress tensor are denoted by Sy and the six-dimensional Euclidean

space formed from these components is called stress space.

We now summarize the main ingredients of the purely mechanical rate-type
theory of a finitely deforming elastic-plastic solid and base our treatment on
the work of Green and Naghdi [2,3] and Naghdi and Trapp [1]. In addition to the
strain tensor ex1,? we assume the existence of a symmetric* second order tensor-
valued function e§L==e§L(XA,t) called the plastic strain at XA and t, and a
scalar-valued function K = K(XA,t) called a measure of work-hardening. It is

assumed that the stress s is given by the constitutive equation

MN
A P
Sy = sMN(u) , U= [eKL,eKL,K} s (5)
and that for fixed values of eﬁL and K,(S)lpOSSesses an inverse of the form
A
ey = Sl o V= {sKL,epKL,K} . (6)

tin {4], Neghdi and Trapp have shown that the symmetry of ed. follows from a
physically plausible work assumption which will be discussga
this section.

at the end of




o —

-~

A A
The response functions s, end e\ in (5) and (6) are taken to be smooth.

We admit the existence of a continuously differentiable scalar-valued

yield (or loading) function g(u) such that, for fixed values of eﬁL and «,

the equation
g(u) =0

represents a closed orientable hypersurface 3 of dimension five

enclosing a region € of strain space. The work-hardening parameter ¢

is chosen so that g(u) <O for all points in the interior of the region €. The
hypersurface 3¢ is called the yield (or loading) surface in strain space.
Corresponding to a motion Xi’ we may associate with each particle of the

body a continuous oriented curve Ce in strain space. This curve will be
called a strain trajectory. The strain trajectories are restricted to lie

initially in € or on its surface 23, i.e.,
g(u) 50 (8

initially on Ce' ]

The constitutive equations for K and e& are (1]

KL
. p
K - clq‘en‘ ) (9)
and
f
0 if g<0 , (a)
A
. ) if g=0and g<0 , (v)
P (10)
KL A
o] if g=0andg=0 , (e)
A A
tprLg if g=0andg>0 , ()

where ch“EkL(“) is a symmetric tensor-valued function, a superposed dot

indicates material time differentiation,

8.
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and where \=A(u) and pKL=FKL(u) are', respectively, a scalar-valued function
A
and a symmetric tensor-valued function. The quantity g is the inner product
of the tangent vector éMN
A .
g=0 and ag/aeMN;!O, g gives the inner product of e

to a strain trajectory C_ and the vector L& . When
e 3emw
and the outwsrd

MN
normal vector to the yield surface 32, where the notation 3g/8eMN stands for
the symmetric form %(ag/aeMN-Fag/aeNM). The conditions involving g and 2 in
(10) are the loading criteria of the strain space formulation. Using conven-
tional terminology, these four conditions in the order listed correspond to

(a) an elastic state (or point in strain space); (b) unloading from an elastic-
plastic state, i.e., a point in strain space for which g=0; (c) neutral
loading from an elastic-plastic state; and (d) loading from an elastic-plastic

A
state. We assume that the coefficient of g in (10d) is nonzero on the yield

surface and, without loss in generality, we then set

In order to provide a geometrical interpretation of the conditions (10),

we need to record the material time derivative of the loading function, namely

. A o .
g=g+ B8 +By (13)
deyT,

where (11) has been used. It follows from (7), (9) and (10a) thai in an

Y elastic state the strain trajectory Ce lies in the interior of €. which is

; o referred to as the elastic region in strain space, and the yleld surface 3
remains stationary. Similarly, by (7), (9), (10b) and (13), during unloading
the strain trajectory Ce intersects the yield surface 3¢ and is moving in

an inwardly direction, with the function g decreasing, while € itself

tour notation A corresponds to \ in [1].




remains stationary. Likewise, from (7), (9), (10c) and (13) during neutral

loading the strain trajectory Ce lies in the yield surface 3&€ while the latter
remains stationary and g=0. Finally, from (7), (9), (104) and (13) during
loading the strain trajectory Ce intersects 3¢ and is moving in an outwardly
direction. It is stipulated in this case that 3¢ is locally pushed outwards

by the strain trajectory Ce so thatT
g=0 , (14)

A
if g=0, g>0. Thus, positive values of the function g can never be reached
on a strain trajectory and the condition (8) holds for all time. It follows

from (9), (10d), (13) and (14) that during loading

gl o (2vBe )} -0 . (15)
%KL,

A .
Therefore, since the coefficient of g is independent of Sy Ve have

o2 .98 -
l+)‘pKL(a o Cyp) = © (16)
°KL

at all pointson the yield surface 3¢ through which loading can occur. We note
that equations (5)l and (6}l hold during loading, neutral loading, unloading
and in an elastic state.

For a given motion xi and an associated strain trajectory Ce we may utilize

the constitutive equations (5)1, (9) and (10), together with appropriate initial

D
KL

continuous oriented curve in stress space. In a similar fashion (6)l may be used

conditions for e . and K, to obtain the corresponding stress trajectory CS, a

to obtain Ce from CS. Furthermore, for a given loading function g(u), with the

aid of (6)1, we can obtain a corresponding function f(y) through the formula

TIn the literature on plasticity this is called the "consistency"” condition,
namely that loading from an elastic-plastic state leads to another elastic-
plastic state. For references and background information in the context of a
stress space formulation, see for example Naghdi [6, pages 141, 137].
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g(W) = gle (W,e2,0) = £V (17)

where the variables Y and \y are defined by (5)2 and (6)2, respectively.

Conversely,(S)lumy be used to obtain g from f. Because of the assumed

p

smoothness of (6)1, for fixed values of ey,

and K, the equation

£(y) = 0 (18)

represents a hypersurface 33 in stress space having the same geometrical
properties as the hypersurface 3¢ in strain space. The region enclosed by 3as

is denoted 8. Tt follows from (17) that a point in strain space belongs to the
elastic region & (i.e., g(u)<O0) if and only if the corresponding point in stress

space satisfies f(\) <O and hence belongs to §. Similarly, by (17) and (18) a

point in strain space belongs to the yield surface 3¢ (i.e., g=0) if and only
if the corresponding point in stress space belongs to 38 (i.e., £=0). Hence, we
refer to the interior of § as the elastic region in stress space, and to 33 as the

yield (or loading) surface in stress space. We have seen that (8) holds for

all t. Therefore, by (17), every stress trajectory Cs is restricted

to lie in § or on its surface 3% and positive values of f can never be reached.
We note that any function of varisbles | can be written as a different
function of variables \y and vice versa, e.g., CKL==ERL(U)==CKL(U) which

: oetcurs in (9).

In {1] a comparative basis was provided between the two independent sets of
loading criteria for the stress space and the strain space formulations. A

. correspondence between the two sets of loading criteria was established for all

conditicns except that during loading. The approach in the present paper
differs from that of [1] in that the loading criteria of the strain space

formulation are regarded as primary and associated loading conditions in

S
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stress space are deduced from the former*. Although in the examination of

the loading criteria our starting point and conclusions are different, the
arguments employed parallel those of [1]. Thus, taking the material time

derivative of (17) and making use of (13) we obtain :

;o f,BF p - A 3 ‘D W,
= + =
f=f oo exr *ag & g-*aep e tac K (19)
KL KL
where
A £ -
f = 52—— Sy (20)
MN

A .
The quantity f is, of course, the inner product of the tangent vector sMN to a

stress trajectory Cs and the vector af/asMN. In view of (19)

A A p
f=g if e, =0Oand K =0 . (21)
KL

Considering an elastic state, £=g<0, (10a) holds, k=0 by (9) and hence
A A
f=g by (21). Since the yield surface 38 in strain space is stationary so also
is the yield surface 38 in stress space. The stress trajectories remain in the

A

interior of S. It is clear from (9), (10b), (17) and (21) that f£=0 and £<O if

A A
g=0 and g<0. In this case (g=0, g<0) the stress trajectory Cs intersects

33 and is directed inwards, with the function f decreasing in value, while 38

*These derived conditions are not the same as the loading criteria usually
assumed in the stress space formulation,

“In [1] it was possible to prove the converse of this statement because of the
independent loading criteria that were assumed in the stress-space formulation.
It will became clear presently that in the context of this paper the converse
statement does not hold.




L

itself remains stationary. It follows from (9), (10e), (17) and (21) that™ " £=0

A A A
and £=0 if g=0 and g=0. In this case (g=0, g=0) the stress trajectory
C, lies in the surface 38 which remains stationary and t=0.

In the case of loading from an elastic-plastic state, it follows from

(9), (10d) and (19) that
£=1+Xp [<_ag____) +(B-ye ), (g0, g>0) (22)
A KL P T 3eP axachL’g’3> .
KL KL
In the developments that follow, the quotient 972 cen be expressed in a

i -]

number of different forms. In order to establish one such form we note that

by (17), (5)1, (6)l and the chain rule of differentiation

2 _af _ af v __ g *mn

P p ?s P e p °

aeKL aeKL MN 2%KL MN ieKL (23)
g_2af . af Bmv__ p my

With the use of (23), (22) can be rewritten as

A ANYA
o1, 20 (o B
g KLBMN aezL -1 KL
30 A
- BMN (g=0, £>0) (24a)
=1- x%m v qm} , (g=0, g> . a
MW de KL

A
Another useful form of the quotient f/g that may be derived from (22) with the

help of (12), and (16) is
? 2 pKL{_a'— LCKL}
A
Fenpg (e 1 a“f , (g=0, §>0) . (2kv)
4 KLaeﬁL KL "Nm{ KcMN]

MN
Since the right-hand side of (21tb)2 is independent of rates, it is clear that

AN
the quotient f/g is independent of rates and has the same value for all strain
trajectories through a given elastic-plastic point on 3¢. Also, in view of (17),

ANA
f/g is dimensionless. C(learly a knowledge of all constitutive equations is required

**See the previous footnote.




for the calculation of ?/3

We now turn to the work assumption of Naghdi and Trapp [4,7]. Starting
with the assumption that the external work done on an elastic-plastic body in
any smooth spatially homogeneous closed strain trajectory is nonnegative, it

was demonstrated’ in (4] that

A A

3. 28

_MN_ T MN P -

{a p 3¢ Cxrlekrtww = © (25)
eKL

A
during loading or neutral loading, i.e., when g=0, gZ0. In the case of
neutral loading it follows from (1Oc) that the left-hand side of (25) vanishes
and (25) is satisfied trivially, while in the case of loading, it follows from

(104) and (12)2that (25) beccmes

A A
ds as

My vy .
=5 *¢ CxulPigomy 2 ° (26)
3¢y,

A .
with g=0 and g>0. The coefficient of e, in (26) is itself independent of

MN

. . A
N and the inequality must hold for all choices of N that satisfy g>0.
Therefore, by the same argument used in Section 5 of [4], we deduce that

gy

M, MN -y 2K

(= *¢ CalPi =Y 3 (27)

aeKI.. MN

*
evaluated on the yield surface g=0, where the scalar function y satisfies

*

Y =Y(wzo . (28)

We emphasize that (27) holds even for a motion that is not homogeneous*.

In order to compare (27) with the results of (4] we multiply on both sides

A
of (27) by Ag and utilize (104) to obtain

A A
Bs 38 . *»A\ A
(. MW 2R =y SSEM!; , (8=0, g8>0) . (29)
de

KL

Ysee equations (5.2), (5.3) and (4.11) of [4]; the notation Hyy in (4] cor-
responds to cMN in the present paper.

*For a discussion of this point, see [4, p. 40] or [7, p. 63].

lh L]




T S D A S et ite 5 e won e -

Recalling the restrictions (l2§and (28), we define a function y by*

A
Y=Aygz0 (30)
and from (29) obtain
Wy Wy
A
M, 1R --Yis— , (g=0, g>0) . (31)

Equation (31) is the same as (5.4) of [4]. We note that (31) involves rates,

while (27) does not. We have shown that (27) implies (31). Conversely, it

A
follows at once from (10d) and (mbthat (31) implies (27) with y*=~(/xg, as

in (30).
AN
From (27) and (2‘+a)l follows an expression for f/g in the form:

A
£=1-XY*A , (g=0, g>0) , (32)
g
where
A= l—as ;g— s (g:f:O) . (33)

The quantity A (when nonzero) represents the inner product of the normal to the yield
surface 38 in stress space and the normal to the yield surface 3¢ in strain space.
For some purposes it is convenlient to express the constitutive equation

(5)lin terms of an equivalent set of kinematical variables in the form

A
Suppose that the partial derivatives asMN/aeKL possess the symxnetries‘r

“The function y on the right-hand side of (31) depends on the varisbles ar?

eﬁN,K and &
fThis is equivalent to the condition that SMN be derivable fram a potential, as
indeed 1s the case in the general thermodynamical theory (see Section 4 of [3])
of which the present development may be regarded as corresponding to the iso-
thermal case. The existence of a potential in the purely mechanical theory
can also be demonstrated by an argument based on the work postulate of [4].

15.




A A
Sy i
3. “3e_ » then in a mamner similar to that in (4, Sec. 5] from (27) we
KL MY
obtain
e, ®/,. =
MY, _MN * of
(=6 bnr * —+=—C )P ==Y s (g=£=0) . (35)
POQL 38y 5P 'O Ca’ 3Py, 0

It is clear fram (35), (30), (10d) and (12) that if the response function

s, in (34) is independent of its second and third arguments, i.e., if

38, 38,
—pMN=O, ?C@-:O’ then
ey,
* L]
Ppr, = ¥ gs?f—#o ’ epm,=vj£fa‘— » (g=0) (36)

KL
and p. is directed along the normal to the yleld surface 33 in stress space
n‘ ’

as also is éﬁL during loading. It follows from (36)l and (28) that in this case

Y >0 , (g=0) (37)

and hence, during loading, in view of (30) and (12)2
Yy>0 (38)
also. When p, satisfies (36)1, (16) can be written as
*
Leay' 25 (REs¥e ) -0 , (g=0) . (39)
KL 2eb
KL
*
The last result can be used to solve for the product Ay and (30) then gives Y.

*
Also, we may set ¥ equal to an arbitrary positive scalar-valued function of the

variables W and then use (39) to determine \. Thus, in the special case in which
;MN
needed for e

in (34) depends only on its first argument, no constitutive equation is

We observe that when Py, satisfies (36)1, then (21|»b)l may be used to

A A
express f/g as

£/6 = W'T , (g=0, £>0) , (40)

*The symmetry of p,. and hence epl(L follows from (35). See [4, Sec. 5].
16.
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where
__.of 2f  3f = . 41
re-m (otictal o 8 0) (41)
KL
Also, in view of (32), (40), (37) and (12)2,
A
0o<Lp=r+n , §=#:K » (g=0, g>0) . (u2)
\Y g
T
r g'
i
!
!
t
1
PR
o
!
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3. Strain-Hardening Response. Geometrical Interpretation.

The quotient gyg'which occurs in (21+b)2 and related equations in Section 2,
is utilized here to define three distinct types of strain-hardening response for
an elastic-plastic material. These definitions are as follows: An elastic-plastic
material is said to be hardening, softening or exhibiting perfectly plastic

A
behavior during loading (g=0, g>0) according to whether¥

(a) 97@ > 0 (for hardening) ,
(v) ﬁ/@ < 0 (for softening) , (43)

AN
(¢) f/g = 0 (for perfectly plastic) .

We emphasize that a condition of loading, i.e., g=0 and é\> 0, is always pre-
supposed in the definitions (43). It is worth observing from (21+b)2 that once
Pyr,? cKL’ g and (6)l are specified, then the strain-hardening response is also knowm.

We now provide a geometrical interpretation of the definitions (43). We
recall that during loading, since g=0, Q >0 and é: O, the strain trajectory Ce
is intersecting the yield surface 3¢ and locally pushing it outwards. Since
g=0 and g=0 it follows from (17) and (19) that £=0 and f=0 also, and the
corresponding stress trajectory Cs is intersecting the yield surface 38 in
stress space. If the material is hardening, (43a) holds and the stress
trajectory Cs is directed outwards and is pushing the surface 38 locally
outwards. But, (43b) holds if the material is softening and the stress
trajectory is directed inwards and is pulling the surface 3% locally inwards.
In perfectly plastic behavior when (43c) holds, the stress trajectory con-
tinues to lie on the yield surface 3% which is stationary.

Thus while during loading the stress trajectory Ce is always pushing the

*Since é is always positive in (43), we could use only ? in providing the
above definitions. But the use of the quotient Gyg, which is rate-
independent, is preferabli in general. For certain purposes, however, it
is useful to employ only f as in (58)3 and (59) of Section k.

18,
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yield surface 3¢ in strain space locally outwards, the corresponding yield
surface 38 in stress space may be moving concurrently outwards, inwards or may be
stationary depending on the type of strain-hardening response being exhibited. The
actual occurrence of such behavior has been indicated in Section 1 with reference
to the simple tension test. The usual stress space formulation of plasticity
theory introduces a priori loading criteria in stress space and stipulstes that
during loading the yield surface in stress space can never move inwards.

Viewed in the context of the present development, the usual stress space formula-
tion of plasticity is seen to include only a hardening type response and to
exclude softening and perfectly plastic responses*. Figure 2 illustrates the
three types of material behavior discussed above.

The definitions for hardening, softening and perfectly plastic behavior intro-
duced in (43) require the use of yield surfaces both in strain space and stress
space. However, it may be noted that our terminology for softening and hardening
seems to be consistent with the geometrical sense of these terms employed in a
stress space formulation by Edelman and Drucker [8]; see Fig. 5 of their paper.
Also, Prager [9] employs the terms hard and soft with reference to material
behavior, but his sense of these terms differs from ours: In [9], a hard
material is one whose stress-strain curve always lies above a given straight
line (representing linear elastic response) with the deviation from linear
behavior increasing for larger deformation; a soft material is one whose stress-
strain curve always lies below the straight line with the deviation increasing
for larger deformation.

In what follows, we frequently need to refer to a set of conditions which
must be satisfied by various functions and material coefficients, and which

arise from characterization of strain hardening response. To avoid undue

*In the context of the present paper, it is not possible to formulate loading
criteria in stress space using only f and f.
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repetition we denote this set of conditions by H and write

> 0 if and only if the material is hardening , (a)

H < 0 if and only if the material is softening , (b) (bh)

= 0 if and only if the material is exhibiting
perfectly plastic behavior . (c)

Returning to the definitions (43) and recalling (2l+b)l and (12)2, it is seen

that
_(f _of e s
pKL[aep 3 CKL} satisfies conditions H . (45)
KL

It is worth mentioning that the usual treatment of an elastic-perfectly plastic
material (see, for example, [2, Sec. 9]) in stress space requires the use of a
yleld condition of the form f(sKL)==const. and the quantity on the left-hand
side of (45) indeed vanishes identically in this case.

With the use of the definitions (43a,b), we now obtain an expression for
the rate of plastic strain which is valid in regions of hardening and softening
behavior only. Thus, by (10d4), (12), (2hb)1 and (43a), in a region of hardening

. A
ep can be related to f through the expression

KL
A
A £
.p f KT,
el = Ap,, T= =~ 0] (46)
KL AR af . of
Lo/ ol > +& e
ey

t p

with (43a) and (4S5a) holding', while in a region of softening éKL is again

given by (46) but now with (43b) and (45b) holding; in both cases, the sign of

*The equation number (45a) refers to (45) along with part (a) of condition H.

20.




TABLE 1

Summary of loading criteria in strain space and

associated conditions in stress space

Elastic g<o0 implies f<O
A A
Unloading g=0, g<0 implies £=0,f<0O
Neutral A_ s _ A
Loading g=0, g=0 implies £f=0,f=0
. A
(a) hardening £=0, £>0
A . . A
Loading g=0, g>0 (b) softening implies{ f=0, £<O
(¢) perfectly plastic £f=0, Poo




- 4 O

the coefficient of Py, in (46) is positive. For perfectly plastic behavior, it

b
KL

A
product involving f and must be calculated from (10d). For convenience, a

is clear from (10d), (th)l, (43c) and (45c) that e, cannot be expressed as a
sumary of the relationships between the loading criteria in strain space and
the associated conditions in stress space is provided in Table 1.

In the remainder of this section, we discuss some special cases of the
foregoing results which are of particular interest in view of their simplicity.
The first two of these (see cases (a) and (b) below) examine the consequences
on strain hardening behavior of certain restrictions on the stress response
functions Q&N in (5)l and EﬂN in (34). The third (see case (c) below) pertains
to a limiting behavior of strain hardening response, i.e., saturation hardening
and softening.

(a) Consider the special case of (5)l for which the stress response is

independent of its last two arguments, i.e.,

ad 28

-0, =H-0 . (47)
aep K

KL

Then, by (23) we have

p p > o
BGKL aeKL
and hence by (2hka) or (22)
AN
flg =1 . (48)

Recalling the definitions (43), it is clear that a material for which (147)l 5
]
hold can never exhibit softening or perfectly plastic behavior. If conditions

(47) are satisfied and if ag/aeMN £0, it follows from (27) and (30) that

Yy =0, vy=0 . (49)
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(b) cConsider the special case of (34) for which the stress response is

independent of its last two arguments. In this case, the results (36) to (42)

hold. It then follows from (37), (40), (43) and (12)2 that

[ satisfies conditions H . (50)

With the use of (36)l and (40), in a region of hardening or softening (46)

becomes

A
A N )
elq'_.' T BSKL¥O ] (51&)

while it follows from (50c), (42), (36)l and (10d) that in a region of perfectly

plastic behavior

A
‘p _ g f
eKL'AasKL’éO . (51b)

(e) Caulk and Naghdi [5] have previously introduced a definition of
saturation hardening in connection with their discussion of hardening response
in eyclic loading of metallic materials (see Eq. (19) in [5]). In view of the
definitions (43), it is of interest to reexamine here the notion of saturation
hardening. Thus, for our present purpose, an elastic-plastic material is said
to exhibit saturation hardening along a strain trajectory Ce (or a stress

trajectory Cs) if and only if there exists a constant Kh such that§

ALA A ,
lim £/g = K, >0 (g=0, g>0) . (52a)

t o>

Similarly a material exhibits saturation softening along a strain trajectory

Ce if and only if there exists a constant Ks such that

A A A
lim f/g = K, <0 (g=0, g>0) . (52v)

t -

§

In the definitions (52a,b) we have excluded for convenience the equality sign.
If the limit of the left-hand sides of (52a,b) is zero, we say that the
material saturates to a perfectly plastic behavior.
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4, Strain Hardening Response for Special Constitutive Equations.

We consider now in scme detail the nature of the hardening response in
small deformation of metals whose behavior is characterized by a simple set
of constitutive equations appropriate for elastic-plastic materials which are

homogeneous and initially isotropic in their reference state. First, we

recall that the infinitesimal elastic strain tensor is defined by e§L==eKL- eﬁL
and note that with e§L==O in the reference configuration, e;L==O also there.

It is convenient to utilize a standard decomposition for second order

tensors. Thus, for example, in the case of the stress tensor, we have

- - 1
sKL—ssKL+1'KL s s_3sKK s

1. is the deviatoric (traceless)

where SaKL is the spherical part of SKL’ KL

part of SkT, and s is the mean normal stress. In a similar manner we decompose

p e . . - ) —e . .

eKL’eKL’eKL into spherical parts e6KL,e 5KL’e 5KL and deviatoric parts YKL’
e

YPKL’YKL‘
Let the stress response function in (5)l be specified by generalized

Hooke's law, namely

]

K e

T = 2uY s = 3k , (53)

and the coefficient function cKL for the rate of work-hardening response in

(9) in the form [10]
CKL = BTKIJ+¢86KL ? (Sh)

where 4 is the shear modulus, k the bulk modulus and P and @ are constants.
With the use of the decompositions just noted, the loading functions f(y) and

Y = = - =P
g(u) can be written as different functions f(TMN,s,YSW,Ep,K) and g(yMN,e,yﬁw,e JK).

In this section, we restrict attention to special loading functions of the form

2L,




£(y) = F(Tm,;szm,;p’K) = TKLTKL"3'§Q'K ’

s kst

(55)

B = Bl ¥ o) = W (v Vi (v ¥ip) + 270 (G202 -

where § is a constant and where (17) and (53) have been usedg. Utilizing

formulas of the typef

daf _ af

aSMN T

of _a_f)

- e e (56)

MN ;
and recalling (20) and (11), it can be easily shown that

af
BSMN

- A . -
=2(mut¥stn) » f=2(namat3vss)

A . e A . . (57)
g = 2(2uTy YV *O¥kE e) = £ +2(2mmypm+ 94k 5 eF)

and the expressions for ag/aeMN ard af'/aeﬁN may be obtained similarly. We

recall that during loading g is positive while g=f=g=£=0. Keeping this

in mind, it follows from (55)l and (57)2 that during loading

£

TKLTKL"‘B‘kEQ-K =0 , 2(m T *3¥ss)-k=0 , f=k (58) |

and hence by the definitions (43),

K and (TMN%MN4-3¢§§7 both satisfy conditions H . (59)

Clearly for the special constitutive equations used in this section, in view of

i (58)3 and (59), the strain hardening behavior may be characterized by K. Further-
more, from (58)3 and (10b,c) during neutral loading it is necessary that k=0 and

during unloading it is necessary that k<0. 1In this connection, recall Table 1

and the discussion following (21).

§The loading function (55); does not depend explicitly on plastic strain, but
includes a dependency on mean normal stress. When ¢ =0 and K =const., (55)
reduces to the usual von Mises yleld function. A loading function of the type
(55)l was previously employed by Green and Naghdi [10].

1‘It'. is understood that in line with the summation convention, our notation

3?731 in (56) stands for the sum Bf/aT -+a?731 -+arya¢




The stress response (53) may be regarded as a special case of that in
(34) with the last two arguments absent; and, in addition, the symmetry con-
ditions mentioned following (34) are satisfied by (53). Hence, in addition to
(36) to (42) the special results obtained at the end of Section 3 [see case (b)
following Eq. (49)] remain valid here. Thus, using (54) and (55), from (33),

(41) and formulas of the type (56) and (57)1, we obtain
A= BEuT e *KED) , T = 2(BT T +3wE0) . (60)

* A A
With the use of (60), AY and f/g may be obtained at once from (42). Also,
remembering (50), we observe that in this case the right-hand side of (60)2

provides a rate-independent characterization of strain hardening. Constitu-

tive equations for the rate of plastic strain or equivalently for e® and

QEL simplify and may now be obtained from (5la) in a region of hardening
or softening and from (51b) in a region of perfectly plastic behavior.

Since our development in Sections 2 and 3 began with the strain space
(rather than the stress space) formulation as primary and since the quotient 972
is used to define strain hardening, it is desirable to examine the predictions
of various theoretical results in the case of the familiar one-dimensional
tension test. To this end, consider a homogeneous deformation sustained

A 3 3
by a uniaxial tension s, =s=s(t) along the X,-axis. Then, using a matrix

11 1
representation for Te ve have
2 0 0
HTKLH = % HbKLH , 8= % 20 , “bKLH =10 -1 0 ’ (61)
0 0o -1

where for brevity we have introduced the constant matrix “bKL“' Assuming

that initial yield occurs at a value 8, of s and a value Ko:>0 of K, the

solution can be obtained in a straightforward manner. We omit details, but




*
record here some of the results of interest :

1 l 2
=3 (2+¢) » Ky = §'s0(2+¢) » 2+y>0 , 5, >0 , (62a)
-p A
s5>0 , k>0 , el > Owheng=0,g>0 , (62b)
Both s and (2p+yp) satisfy condition H . (62¢)

We postpone a discussion of perfectly plastic behavior until later in this
section but consider further calculations for the other two types of behavior:

In a region of hardening or softening, the elastic and plastic strains are

S Il - & gl (63)
- -8 s-8
s Ivgell = == lpggll
7 (630)
1 0 0
. =5 .
HeKL“ = = 0 -v 0
o 0 -
deil dY{l > 0 if and only if the material is hardening ,
(63c)
ds and ds

< 0 if and only if the material is softening ,

* ¥* * *
where the constants v ,E ,, and k are defined by

v*_l—-i E*—M

B 2+* ’ - 2(2_'_*)2 ’
LB e (63d)
. 2(l+v ) zi
K= —Em - " (440)
3(1-2v *)

and

"It is clear from (58)3, (10), (62a) 3 and (62b), that during neutral loading,
it is necessary that ~ §=0 and dur 73 unloading it is necessary that 8 <0.
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* *
E and p satisfy conditions H .

The constants in (63d) have been defined analogously to the corresponding

constants in linear elasticity, e.g., p= E s k= E » Where v is
2(1+v) 3(1-2v)

*
Poisson's ratio. In the special case that y=0, v =%— and the expressions
* * *
for E ,u simplify while k =» as ¢y~ 0. Continuing our discussion of hardiening
and softening behavior, it can be shown that when *#()(see Appendix A for

AN
details) the quotient f/g can be written as

2
dy,. Ay " - goe ’ (e
3 er (el gt e v 5 G Mg D

*
where tr stands for the trace operator. In the special case when v =v,

®>In>
]

(64) reduces to (see Appendix A for details)

de
de,-1 p,-1
= [E EE] = [l-+dee] s (652)

®>|n>

and by (43a,b)

> 0 if end only if the material is hardening |,

de &°p
Ty and (1-+dee) (65b)

< 0 if and only if the material is softening |,

where as in Section 1, we have sgain used the notation e=e; ;s ee==eil,
e =l

Before closing this section, it is desirable to elaborate briefly on
some features of the foregoing results for uniaxial tension, which have been
obtained with the use of a special set of constitutive equations. With
reference to all three types of strain hardening response defined in (43),
it is clear that during loading eil is strictly increasing with time by
virtue of (62b)3. Moreover, according to (62c) the time rate of stress

may be used to characterize strain hardening behavior in uniaxial tension

and a characterization of the same behavior is provided by the combination

28.
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(2p+yp) of the constitutive coefficients. While the elastic moduli E,yu are

¥
always positive, it follows from (63e) that the constants E ,u* are positive

in a region of hardening and negative in a region of softening. In tiae special
* A A

case of v =v, it is clear from (65a) that the quotient f/g can be expressed in

terms of quantities (2) to (4) and indeed (65b) corresponds to the behavior

summarized in (4) for uniaxial tensionﬁ. Furthermore, with y=0 in (55),, the
1

plastic volume change or equivalently e® vanishes also. The strain-hardening
response is then characterized by B, in view of (62¢). Also, in a region of

AN
hardening or softening the quotient f/g reduces to (see Appendix A for details)

(3 I, (66)

®>iHH>
]

_ e_ e
where we have put Y=Yy, and vy =Y11°
The significance of the strain space formulation in the case of elastic-
A A
perfectly plastic materials was pointed out in [1]. Since the quotient f/g
is used here to define various types of hardening response, it is desirable to
indicate the reduction of the present development to the usual perfectly plastic
A
behavior in uniaxial tension. First, we observe that during loading (g=0, g>0)
AN
for perfectly plastic behavior f/g=T=0 by (43c) and (42). It then follows that

K=0, k= Kys S=8_ by (58)3 and (62a) and that eil, although indeterminate*,

1,2
is strictly increasing with time in view of (62b)3. Thus, in the context of the

present paper, the uniaxial stress-strain curve for elastic-perfectly plastic

behavior consists of a linearly elastic portion followed by a horizontal portion

p

and as time progresses the locus of ell

moves ocutward along the ebscissa of the

§Recall that the special constitutive equations empioyed in this section are
not sufficiently general to predict all details of the stress-strain curve
in Fig. 1. Indeed, different choices of the combination (2p+y¢) of the
coefficients (appropriate for different materials) yield stress-strain
curves consisting of straight line segments whose slopes correspond to the
rising or falling portions of the curve in Fig. 1.

The indeterminacy of eil stems from the fact that (51b) in this case reduces
to an identity.

3

29.
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.s-e curve. This is in agreement with the usual characterization of
perfectly plastic behavior in uniaxial tension. We also note that

an examination of the solution given by (63a,b) and (63e)

easily reveals that hardening (softening) is represented in a stress-strain
diagram by a straight line which lies above (below) the horizontal perfectly
plastic line. Indeed, since ell=s/E+ (s-so)/E*, then dell/ds = l/E+l/E*
and by standard results for inequalities it follows from (63e) that

de

® > dll > max{i, —l-} if the material is hardening |,
s E E*
de
i > i1 > L > -» if the material is softening .
1 E ds E*
Moreover,
dey; 1
®>=35 >F implies that the material is hardening ,
deyy 1
- < s < E implies that the material is softening .

30-




5. Saturation hardening

As in Section 4 we again restrict attention to small deformations of
i elastic-plastic materials, which are homogeneous and initially isotropic in
their reference configuration. We also assume that there is no plastic
volume change so that e¥ =0 in the notation of Section 4. For a fairly large
class of metallic materials, it is well known that the stress-strain curves
of uniaxial cyclic loeding attain -- after several cycles --
saturation hardening. The purpose of this section is to indicate how the
development of Sections 2 and 3 can be used to characterize a hardening
response that includes saturation behavior and to compare the results with
those of Caulk and Naghdi [5].

Starting with a fairly general discussion of loading functions contained

in the paper of Green and Naghdi [2], for initially isotropic materials Caulk
and Naghdi [5] derived a loading function in the form (see [5, Egs. (’40)l and
(56),1)

= T p = - P
f(u) - f(Tm’Ym’K) - TKLTKL GTEYPKL"-O KLYIGJ K b ( )
67

g(W) = B(¥yqeVigrok) = Mi° (e VB (v vE ) = 20l VP VR +avB v -k

where o and o are constants and where (53) has been used in writing (67)2. It

should be noted that the loading functions (67) depend explicitly on YﬁL but

1,2
not on the mean normal stress s. Here we also adopt (67)l 5 but, instead of the
3

hardening response assumed in [5], we specify the coefficient function Cy, in (9) by

I g, . o s wwa o e el

Co = BUOITL + A0, (68)

which is different from that used in Section 4. The constitutive

A A
assumption for C in [5] 18 similar to (68) but with B(k) and T(k) specified

by

A A ——— T~ b~ ot et &

3.
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K=K

8 A
’ (K) =
Ko™K P L Ko~%s

K-K

Blx) = 2

n (69)

where B and T are constants, Ko 18 the value of k at initial yield and

kg 1s the saturation value of K. Since the stress response (53) is used in
this section, in addition to (36) to (42), all the results stated under
case (b) at the end of Section 3 are also valid here.

To facilitate the discussion that follows and for later reference, we

record the expressions

£ = Crg-o )ty s (70)

which have been obtained with the use of formulas of the type (56) along with
(20), (11), (36)l and (37). With the help of (70) and recalling the definitions

(33) and (41), A and T are given by

(L -Ver ) (@7 ey ) >0,
R . (72)
[ = (2r-avp ){(a#B(0))ry - (20-1(K))vg; ) >

Thus, based on the constitutive equations assumed in this section,

A is 2y times the squar;a of the magnitude of the normal to the yield
surface 38 in stress space. Having obt#ined the results (71)1’2, M{* can be
calculated from (1+2)l and it then follows from (32) that the quotient ?/Q must

satisfy the inequality

A A

f/g <1 , (72)
which limits the extent of the hardening behavior. The restriction (72), in

32.




turn, places an upper bound of unity on the value of the saturation constant

K. in (52a) so that
0O<K 1 . (73)

Expressions for QﬁL can now be easily calculated from (5la) in a region of
hardening or softening and from (51b) in a region of perfectly plastic
behavior.

Given the constitutive assumptions employed in this section, the results
(71)1’2 end the restrictions (72), (73) are valid for any small elastic-
plastic deformations. In the rest of this section, however, we again confine
attention to a homogeneous deformation sustained by uniaxial temsion (61).
Since plastic volume change e* =0, e  =e is given by (63a)l. Again, as in

R _ - ot = oF
(l)l, for convenience we use the notation e-ell, ee ell’ e e

p 1 and

write

B = % el

where the constant matrix ”bKL” is defined by (61)3. Also, from (70)1,3,h’

(61) and (1)2, we deduce that

Pe@o-ae)i , £= Go-ae)(B+(3uB))) , 3s-ae, #0 (g=0) . (W)

2
s
o}

o At initial yleld e =0 and K = >0 by virtue of (7'4)3 and (67),.

Fwin

Hence, on the yield surface (g=0), 3 s-ae, must be positive. From this
b last result, along with (30) and (36),, we have e , >0 during loading and
F> therefore ep is strictly increasing with time. Further, from the definition
(43), and the positivity of the coefficient of & in (7&)1, it follows that &

*
must satisfy the conditions in (4k4). The above results may be summarized as follows

*The inequality (75);, together with (74), and (10), imply the following:
During neutral loading it is necessary t%nt 8 =0, while during unloading it

¥ is necessary that s <O.




= s T

L .
gs-aep>0 ’ ep>0 ’

(75)
é satisfies conditions H

While (75)2 holds during all three types of strain-hardening behavior defined

in (43), it follows at once from (75)3 and (1)2 that ée also satisfies con-
ditions H.

For uniaxial tension under discussion, the quantities A and T in (71)l 5
b

reduce to

- 22 s )2 3 (d e )F
A= 3u(3 s aep) >0 , T= 5 (3 s aep)F ,

A (76)
T = £ (a+B(k))s - (20-0(k))e,,

where for later convenience we have introduced the quantity F defined by (76)3.
Further, from (50), (76)2 and (75)l follows the result

T satisfies conditions H . (17)

Also, the expression for plastic strain rate ép in a region of hardening or
softening can be written as
2 h 2 /b
3G . 3 :(3 : acp)
r T+S E(ss-
T r+3 (3 ozep)

e =
b

, (78)

which is similar in form to that obtained in [5] and where the relation
s==E(e-ep) has been used in deriving (78)2. In fact, if the coefficient
functions a and ﬁ'which occur in F are specialized to those given by (69), then
(78) reduces to that in [5, Eq. (80)].

The result (75)3 enables us to calculate the slopes de/ds, dep/ds

explicitly as functions of s,ep,K. Thus, with the use of (1), (78)l and chain

rule of differentiation, in a region of hardening or softening we have




s T
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2 ,h
de de S (zs~-ae)
de _1,_p —R_33 " p
& "E'd * & = (79)
It follows from (79), (75); and (77) that
de de de
® > 7§£-> 0, @>==> max{E, . —2} 5 0 if the material is hardening ,
de 1 a e (80e)
- . ) =, 4% __DP : s
® < = <0 , E” as > as if the material is softening .
Moreover,
de 1 de
©>->F (or equivalently o > TEP > 0) implies hardening ,
o (80b)
-0 < %s < % (or equivalently ~= < 1§F < 0) implies softening .
Since dee/ds =%which is always positive, we may write dep/dee =E dep/ds,
de/dee= E de/ds and then obtain explicit expressions for these derivatives
from (79). It is evident that conditions of the type indicated in (80) for
dep/ds also hold for dep/dee. It follows from (42), (76) and (79)2 that in a
region of hardening or softening
A de d ays
f -1 ll 1l,-1,-1
| 1>5=[1+3 2817 = (1+== (=271 . (81)
g

In view of (80a) and (43), (81) implies that de p/ds <-1/3u in a region of
softening. It is clear from (81)1 and (1) that a knowledge of u,E and the
slope de/ds suffices to determine ?/é\ If the material saturates to perfectly
plastic behavior, the left-hand side of (81)1, i.e., é/é\ must tend to zero and
hence in this case dep/ds must become unbounded.
We now turn to a brief discussion of saturation hardening usually

observed under uniasxial cyclic loading. Recalling the definitions (52a,b),
from (81) we deduce that saturation hardening occurs if there exists a constant

Kh such that

T —
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1-
de 1
[1""3!.1»:-3!:—2] Kh N %ﬂ£='ﬁ+§% s (O<Kh§l) . (82)

In order to exploit the implications of (82), we first observe that T defined

by (76)3 can be rewritten as

-

2
T=1Gs-ae,)(@80) +(L-20+ 00+ 2 Bl)e, (83)

and then express (79)2 in the form

de (o -20+n(K)+-B(K))e -

2L - [ﬁ- (+B(K)) + (84)

2 (— s -oe, )
Consider now a special material response which corresponds to the vanishing of
the numerator of the second term in the square brackets in (84), i.e.,

2
“2--2c+1'1\(n)+% 8(x) =0 , (85)

which has the same form as a particular case discussed in [5]. From (75)1,

(77)1, (83) to (85) and (f1), it can be readily concluded that

A
o+ p(x) satisfies conditions H ,

de (86)
s SV B §=[1+_1+}_]-1 ,
b)) & a+B (k)

Also, in view of (::3b) and (86)2, in a region of softening:
A
0>a+p(k) >-lu .

If saturation hardening occurs with 0<K <1, then from (82)1, (86) and the
condition (85) we have

L 2
1im B(K)--ﬁ-a R 11mﬁ(x)=- e

Kh+2° ’ (0<Kh<l) ’ (87)

¢ o K'h t = I-Kh




g

- A
while B(k) becomes unbounded for K =1.

We further examine saturation hardening by adopting the special coefficients
(69) subject to the condition (85). When saturation is assumed to occur, the

limit of the coefficients (69) as t =« is zero and from (85), (82) and (86)2

we obtain
2_ . de 1.4 [+l ~
o —’40 1 QB"'ZTI—O 14 :-i-l:ds‘E"'Ba ’ O<Kh_[l+a] <1l ’ a>0 b (88)

the first three of which are the same as those derived in (5, Egs. (70) and
(86)1.

By way of illustration, consider the 304 stainless steel whose behavior
in cyclic tension-compression is discussed in [5, Sec. 7]. As in [5], for the
304 stainless steel, we take the values of E=123 GPa and de/ds = (3.85 GPB).l
at initial yield and also assume the value v =0.3 for Poisson's ratio*. With
these values, the expressions (79)l and (81) predict that the quotient 972 at
initial yield is approximately egual to 0.027. Agein using the above values,
as well as a=1.5 (for tension), (88)3 gives an approximate value of 0.008 for
K - Thus, 972 decreases from a value of 0.027 at initial yield to a value of
0.008 at saturation. It is clear from (82) that the definition of saturation
hardening given by (52a) implies that the slopes de/ds or dep/ds tend to
constant limits at saturation. 1In this connection, it should be noted that
when Q and ﬁ are of the form (69), the definition of saturstion hardening used
in [5] also gives constant limiting slopes. |

We return once more to the perfectly plastic case, and first observe that
the expression for' Y can be obtained from (51b) with the use of (70), ) and

(71)1. In view of (75)3, § =0 for perfectly plastic behavior and s retains its

fA value for Poisson's ratio was not needed in the calculation given in (5,
Sec. 7). With v=0.3 and E=123 GPa, y is calculated to be 47.31 GPa. -
%

In fact, in the case of uniaxial tension, the resulting expression is an
identity.
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initial yield value s  and, in accordance with (75)2, ey is strictly increasing
with time during loading. The work-hardening parameter K may then be obtained

as a function of e from g=f=0 with f given by (67)1:

242 3 562
K = So asoep-+2 cep .

By (76) and (77c), for perfectly plastic behavior it is necessary that
2 A A
3 (a+B(k))s - (20-T\(K))ep =0 (90)

for all ey We observe, however, that in view of (76) and (77c) the constant

ralues |
Be) =-a , M) =20 (o1)

are sufficient for perfectly plastic behavior. It should be noted that the

values (91) satisfy the condition (85).
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Appendix A
We provide here details of the calculations leading to (64), (65a) and (66),

A A
and also record alternative useful forms of the quotient f/g associated with the
constitutive equations of Section 4. From (63), in a region of hardening or

softening we have

P 4Te L
g8 (d25)l g, Eef deyl, 1+k—“; T (A1)
Ye
4 l'l - nsKLn+n Ly = = <1+:‘->ns,q,u : (A2)
1 0 0

e de® p de *
I ™ = Mg+ I 1™ - Do+ % o v o | )

*

In a region of hardening or softening I'# 0 by (50) and using (1&2)2 we may

AN -
write f/g= (l-%) 1 Then, by (60) and (61) we have:

A 2
£ 2(Up+3¢°k) ;-1
=M+ 2840 ]
g

. E* (2\1w) (12\»)}]-1

2(y-y )2 41-1
- L+ E 0+ ARSI (ak)
E

AN
and we may recall that 1+v>0, 1-2v>0. If wéo, then f/g may also be

written as

A
_f/:= (1 hg+3t ] - 2+¢ - . (A5)
g '+u 3" 2(1+“;)+v(1+k—*)

18

The result (64) follows at once from (Al), (A2) and (A5). Similarly, if

v =v (or ¢=ll'%), then from (A3) and (Ak) we obtain

4o.
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- E;-1_ (L ffgg de;L -1,,-1
= [1+E*] =3 teflls g+ I = (86)

®R>|re>

The result (65a) follows from (A6), (63a) and (64). With the use of (A3) it is
de de

also possible to write (A6) in terms of “d_?“ “_?m‘|-l but we do not record

this here.

In the special case that §=0, we note that by (63d)2 3 and (A2),

Lok b %u[ud—su n——u‘l o (& e (A7)

The relations (Ah)l, (A7), (63a)2 and (63b)2 lead to the expression (66).

L1,




Fig.

Fig.

Captions for Figures

l. Tdealized stress-strain diagram for a typical ductile metal. As the
points 1,2,3,4,5 of the stress-strain curve are successively traversed,
the locus of the yield point on the e-axis moves outwards through
Bl’Ba’B3’Bh and B5, respectively, while the corresponding locus of the

yield point on the s-axis first moves upwards through A.,A, to A_, and

1772 3

it then moves downwards through Ah and A All unloading curves are

5.
drawn parallel to the linear elastic segment 1-0 and hysteresis is

ignored.

2. A sketch indicating the motion of yield surfaces in stress space and
strain space. During loading the yield surface 3€ in strain space moves

outwards with the strain trajectory Ce through positions such as sB,»

B
B3,Bh,B5. The corresponding yield surface 38 in stress space moves out-

wards through positions such as A, and A, during hardening behavior, is

1 2

stationary in positions of the type A, during perfectly plastic behavior,

3

and moves inwards through positions such as Ah and A_ during softening

5

behavior.
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